Games, graphs, and machines

August 27, 2024

Warm up

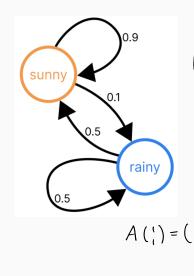
Write the transition matrix A for the following Markov chain.



$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}$$
• Rows add up to 1
$$G = (1 + 1)^{1/2}$$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9 + 0.1) = (1 + 1)^{1/2}$
• $(0.9$

Warm up

Write the transition matrix A for the following Markov chain.



Calculate A^2 . What do entries of A^2 represent?

$$\begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.86 & 0.14 \\ 0.7 & 0.3 \end{pmatrix}$$

$$f_{\text{WO}} \text{ Step Prob.}$$

$$A^{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = A \cdot A \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

1

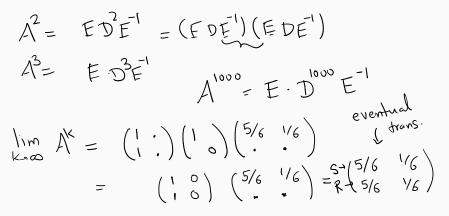
Why does *k*th power represent *k*-step probabilities?

A²_{i,j} = A_{i,1} · A_{1,j} + A_{i,2} · A_{2,j}. (Prob of (-)) (Prob of (-)) $\cdot = AHO$ + = ORProb of taking ? { Sirst = Prob of Prob of taking Second i-2-j Sterm. going i-j in 2 steps

Large powers

Same rows
$$\Rightarrow$$
 eventual prob. indep of current
We have $A = EDE^{-1}$, where
 $E = \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}$ $D = \begin{pmatrix} 1 & 0 \\ 0 & 0.4 \end{pmatrix}$ $E^{-1} = \begin{pmatrix} 5/6 & 1/6 \\ 1/6 & -1/6 \end{pmatrix}$. State.

Find (approximate) A^k for large k. What do the entries represent?

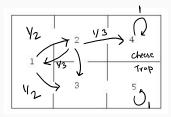


When do large powers converge?

Suppose $A = EDE^{-1}$, where D is diagonal. When will A^k converge (to a matrix with finite entries) as k grows? Eigenvalues Conv. Dependo on entries of I is an entry >1 (in abs) 101 =) diverge abs <1 Never hoppens Converse for Markov Chains

A maze

A maze used for training rats has the following shape.



Suppose that at every stage, the rat picks a door at random (with equal probability) and goes through that door.* Write the Markov chain and the transition matrix. Fx cept rooms 4 & 5 which contain cheese and a trap, respectively.

Once there, the rat stays there forever.

Powers of the maze

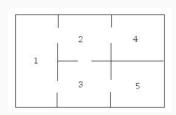
The matrix A is diagonalisable with eigenvalues [-1/3, 1, 1, -0.43, 0.76]. Will powers of A converge?

Powers of the maze

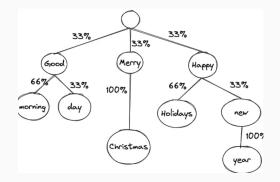
The powers of A converge to

(0	0	0	0.50	0.50	
0	0	0	0.62	0.50 0.38 0.62	
0	0	0	0.38	0.62	
0	0	0	1	0	
0/	0	0	0	1 /	

Can you interpret the entries?



A text generator



Let A be the corresponding transition matrix. The powers of A stabilise. When do they stabilise? What is the first row of A^{100} ?